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Abstract. 
This article demonstrates that speed 
measurement with accuracy approaching 0.01 
knot is possible by using GPS Doppler data. 
The method is illustrated with measurements 
made by GT-11 GPS unit made by Locosys. 
 
Introduction 
Typical approach to using GPS for speed 
measurement today is to consider a series of 
“trackpoints” that record position estimates 
(latitude and longitude) determined by the 
GPS at regular time intervals. 
 
Each GPS trackpoint is determined with some 
error that is variable and difficult to 
determine. Hence, speed values computed 
from a series of trackpoints have unknown 
accuracy and cannot be considered reliable. It 
is virtually impossible to prove the accuracy 
of speed computed from a recorded series of 
trackpoints. 
 
The most inaccurate is the method that tries to 
estimate an average speed over some 
“accumulated distance” between trackpoints. 
Due to trackpoint inaccuracies, the line 
connecting all track points is a zig-zag, even 
if the real path of a speed competitor is a 
smooth or straight line. Since the length of 
this zig-zag is always longer than a 
smooth/straight line, the “average speed” 
determined with the “accumulated distance” 
method always overestimates the real speed. 
The less accurate are trackpoints (the less 
accurate is a GPS unit) – the larger the 
estimated “average” speed and the more 
impressive is the “achievement”… 
 
Doppler 
An alternative to measuring speed from series 
of trackpoints is using the Doppler effect. 
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Modern GPS devices implement digital PLL 
(phase-lock loop) receivers to continuously 
track carrier frequencies of a number of 
satellites. For example, GT-11 tracks carrier 
frequencies of up to 12 satellites 
simultaneously. The frequency tracking has to 
be continuous simply because each receiver 
has to be always ready to receive data from its 
satellite.  
 
The very fact that data is read from any given 
satellite is proof that its carrier frequency is 
tracked with high accuracy.  
 
The difference between the known satellite 
carrier frequency and the frequency 
determined at the receiver is known as a 
“Doppler shift”. This Doppler shift is directly 
proportional to velocity of the receiver along 
the direction to the satellite, regardless of the 
distance to this satellite.  
 
With multiple satellites tracked it is possible 
to determine the 3D velocity vector of the 
receiver. In general, the more satellites are 
tracked – the better the speed estimate. 
 
Accuracy of the Doppler tracking 
The Doppler speed measurement accuracy is 
not constant. It depends on the number of 
tracked satellites as well as on their 
geometrical distribution above the horizon. 
 
For this reason it is important to measure this 
accuracy directly - together with the actual 
speed determined from the Doppler shift if 
possible. 
 
The most convenient way of verifying the 
Doppler speed measurement accuracy is 
recording the Doppler speed data of a 
stationary GPS receiver at regular time 
intervals. This method accounts for all 
known6 GPS-Doppler speed measurement 
errors. Results of @1 hour recording using 
GT-11 are presented in Fig.1. 
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 Fig.1. Comparison of Doppler speed and trackpoint-derived speed for stationary GT-11 using RealSpeed 
software. Binary GT-11 data was logged for about 1 hour every second. Top-left: latitude-longitude 
trackpoint trajectory. Top-right: a fragment of the data file (distance in meters, speed in knots). Bottom:
speed in knots: black – speed determined from trackpoints, green: Doppler speed, orange: number of tracked 
satellites. Horizontal axis shows time in hours:minutes. The measured average Doppler speed is 0.0554 knot. 
The position-derived average speed is 0.479 knots. The GPS unit was stationary, but the accumulated distance 
computed from positions (trackpoints) is almost 1 km. Note the difference between HDOP (Horizontal 
Dilution of Precision) and the gps-chip computed Position Error for each trackpoint.  
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b)  Fig.2. a) Measured distribution of the magnitude of Doppler measurement error in 1-second samples during 1-
hour observation. Discrete resolution is clearly visible with 1-bit corresponding to about 0.0194 knot (0.01 
m/s). b) Doppler measurement error as a function of time. 10-sample average error magnitude is shown. 1-bit 
resolution is constant (a), but the Doppler measurement accuracy varies in time.  

Doppler accuracy at non-zero speed 
What will happen to the Doppler speed 
resolution and accuracy for non-stationary 
GPS? 
 

We need to remember that Earth spins. A 
point that seems stationary with respect to the 
surface of the Earth actually moves West-to-
East with speed in the order of 700 knots in 
the geocentric frame of reference. (698 knots 
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at Sandy Point, Vic, Australia). Yes, every 
parked car can receive a speeding fine !!! 
 
Hence, from the point of view of the PLL 
Doppler frequency tracking system 
implemented in GPS devices it actually does 
not matter whether we try to measure speed of 
700 knots, 650 knots or 750 knots.  
 
Improving the accuracy by averaging 
In their wisdom, developers of GT-11 enabled 
continuous logging of low-pass filtered 
Doppler speed data at 1 second intervals. This 
enables us to evaluate the average speed with 
greater accuracy than the accuracy of a single 
Doppler sample.  
 
Let’s begin with recalling the universally 
accepted definitions of speed and the average 
speed. Consider object moving along path P 
and traveling the distance ∆l during the time 
interval ∆t = t2 – t1. 

 t2t1 

∆ lP  The speed v of the object is defined as 

dt
dl

t
lv t =

∆
∆= →∆ 0lim    (1) 

The average speed v̂  over time T is defined as 
a time average of v as follows: 
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Definition of the average speed determines 
unique relationship between the travelled 
distance L (measured along the path P) and 
the average speed v)   

TvL )

=    (3) 
It is important to point out that the average 
speed over the time T and the average speed 
over the distance L are identical: there exists 
only one average speed that describes motion. 
For this reason, the average speed is the best 
possible measure of speed in sports that use 
speed for their ranking. 
 
In real measurements, each discrete GPS-
Doppler speed sample vkD contains 
measurement error vke. Hence true speed vk is 

kekDk vvv −= . For a discrete series of speed 
samples vkD acquired at N uniform time 
intervals over the time T we can approximate 
the integral in the equation (2) by a sum and 
the expression for the unknown average speed 
becomes 
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The first term Dv
)  is the exact average of all 

measured Doppler samples; the second term 
ev
)  represents the measurement error. Other 
methods of integration of the discrete series 
are discussed later in this article. 
 
Measurement errors vke of each sample can be 
considered a series of independent random 
variables that share the same probability 
distribution D. Fig 2 demonstrates that both 
the expected value µ and the standard 
deviation σ of D exist and are finite. A typical 
measured distribution of the magnitude of the 
speed error vke is shown in Fig 2. In reality, 
the probabilities of errors vke increasing and 
decreasing the measured values of speed are 
equal. Hence each random variable vke can be 
considered to have µ =0 and σ < σM + µM, 
where µM is he expected value and σM is the 
standard deviation of the measured magnitude 
of the speed error vke. 
 
The standard error v

)σ of the measured average 
speed v̂ can be determined directly from the 
Central Limit Theorem5 to be: 

NN
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vv e

σµσσσ +
<== ))   (5) 

This error is inversely proportional to N  
and hence it decreases with the number of 
sampling intervals. As the number of 
sampling intervals N increases, the 
distribution of v

)σ  approaches the normal 
distribution, enabling us to determine the 
claimed average speed v) with any required 
confidence level. 
 
In the absence of measured µM and σM the 
standard error σ specified by the GPS 
manufacturer for Doppler speed should be 
used. 
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Non-uniform sampling intervals 
When multiple GT-11 units are used to 
sample GPS-Doppler speed at 1Hz each, it is 
possible to synchronize their sampling 
sequences to achieve GPS-Doppler speed 
samples at sub-second intervals, because all 
GT-11 units report their samples in UTC time 
with 1ms accuracy. Initially set time 
“skewing” has been found maintained for 
many hours (providing that all synchronized 
GT-11 units kept tracking satellites) and 
hence provides us with a method to increase 
the GPS-Doppler sampling frequency. 
 
Ideally, when K GT-11 units are used, each 
second should be divided into K equal 
sampling intervals. However, in practice, K 
sub-second intervals may not be equal.  For 
this reason we need to determine the average 
speed and its standard error for such a 
situation.  
 
Without loss of generality we may consider 
the case of K=2 GT-11 units and the 
corresponding 2 sub-second time intervals ∆t1 
and ∆t2, because as we shall soon see the K=2 
case is extendable to any K. The integral in 
equation (2) can be approximated by a 
discrete sum of samples as follows 
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where N1 and N2 are numbers of sampling 
intervals ∆t1 and ∆t2 respectively in T and N = 
N1 + N2. The first term represents Dv

)  (the 
exact average of all measured Doppler 
samples); the second term represents ev

)  (the 
measurement error). Applying the Central 
Limit Theorem5 to each term in the numerator 
of ev

) and implementing the theorem 
governing addition of variances of 
independent variables8 we obtain the 
following expression for the standard error 
v
)σ of the average speed v̂ : 
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This formula is easily extendable to 
accomodate K diffferent sampling intervals as 
follows: 
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For K=1 this formula gives equation (5) with 
N being the number of sampling intervals ∆t 
during the time T. 
 
Rectangular rule of integration 
So far we approximated the intergral in the 
equation (2) by a simple sum of discrete 
terms. This method of integration is referred 
to as a “rectangular rule of integration”8. In 
this rule it is assumed that the integrated 
function does not change between samples. 
 

t 
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t 
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 Fig 3. Comparison of Left Riemann and Right 
Riemann approximation in the rectangular rule of 

integration. 
For a large number of discrete samples Right 
Riemann, Left Riemann approximations (as 
well as midpoint approximation that is not a 
convenient option for samples of an unknown 
function) methods converge to the same 
result, but it is clear that for a limited number 
of experimentally acquired samples the 
rectangular rule of integration can be a source 
of ambiguity. 
 
Trapezoidal Rule of integration 

 

t 

vD 

 Fig 4. Trapezoidal rule of integration offers excellent 
accuracy for a limited number of discrete samples and 

eliminates the ambiguity associated with the 
rectangular rule of integration 
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Integration accuracy of an unknown function 
represented by a limited number of discrete 
samples can be improved and ambiguity 
associated with the rectangular rule of 
integration can be eliminated by 
implementing the so-called “trapezoidal rule 
of integration”8. 

 
It is important to point out that in the 
rectangular method of integration the number 
of GPS-Doppler samples N is equal to the 
number of the sampling intervals during the 
time T (see Fig 3) and all samples are given 
the same weight.  
 
In contrast, the trapezoidal rule requires one 
extra sample and requires the first and the 
last sample in the interval T to be given 
weight of 0.5.  
 
For a uniform sampling period (K=1) the 
trapezoidal rule can be expressed as follows: 
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where v0D and vND are the first and the last 
samples in the integration interval T. The 
expression for Dv

)  in the general case of K 
durations of sampling intervals is: 
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where ∑

=
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K
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kNN

1
, and ∆t1 and ∆tK are the 

corresponding (the first and the last) sampling 
intervals. 
 
Using the same tools as in the previous 
section of this article we can estimate the 
standard error v

)σ  of the unknown average 
speed v̂  obtained using the trapezoidal rule of 
integration to be: 
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For K=1 this formula gives the equation (5) 
providing that Nk is the number of sampling 
intervals ∆tk during the time T. 
 
Simpson Rule of integration 
The so-called Simpson rule8 of integration of 
discrete series of samples uses parabolas to 
interpolate between discrete samples and is 
regarded as more accurate than the trapezoidal 
rule. Although it is possible to use the 
Simpson rule to compute Dv

)  and estimate the 
standard error v

)σ  of the corresponding 
average speed, the gain in the accuracy is 
likely to be too small to be worth an effort. 
 
Average of M speed attempts 
In some sports ranking is based on the 
average speed of several attempts (runs). If 
the number of attempts is M , the standard 
error of their average speed is: 

 ∑
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where kσ is the standard error of the average 
speed of the k-th attempt. 
 
Claimed speed 
In sports that base their rankings on the 
achieved average speed it is convenient to 
introduce the concept of “claimed average 
speed”, being the average speed that can be 
claimed to have been achieved with the 
required level of confidence in the presence of 
measuring errors. Let’s define the claimed 
speed as 

vDCLAIMED vv )

))

σc−=    (13) 
Fig 5 illustrates the fact that by adopting c=2 
we can claim with 97.725% confidence that the 
claimed average speed has been achieved. 
 
 

Dv
)

 

v
)2σ  

)  

97.725% 2.275% 

98CLAIMEDv
)  
)  

Average 
 Speed 

Fig. 5. Relationship between the measured average 
speed Dv

)  and claimed speed for c =2 
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The graph in Fig 6. illustrates relationship 
between the coefficient c and the 
corresponding confidence level of the claimed 
speed.  
 
It is clear that if we ignore measurement 
errors (c=0) we can claim with 50% 
confidence that Dv

)  has been achieved. 
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Increasing N 
Regardless of the method of integration used, 
the accuracy of the average speed increases 
with the total number of samples and 
sampling intervals N in the interval T. N can 
be increased in three ways: increasing the 
time T for measuring the speed and/or 
increasing the sampling frequency and/or 
increasing the number of GT-11 units that 
measure the same average speed. 
 
Increasing the number of GT-11 units to 
measure the same average speed (using an 
array of GPS units) has rather profound 
consequences for the accuracy of speed 
measurement using the GPS-Doppler method. 
 
Theoretically speaking, very high accuracy in 
the average speed measurement can be 
achieved using the GPS-Doppler method, 
providing that sufficiently large GPS 
instrument array is used. 
 
This is possible, because  

1. The measurement error decreases with 
increased number of samples N 

2. GPS-Doppler speed samples acquired 
by individual GPS units are 
independent  

Examples 
If a speed contest was made at the location 
and during the time I recorded the data 
presented in Fig 1. and Fig 2, an average of 
10 consecutive 1-second Doppler readings 
could produce an average speed over 10 
seconds with accuracy of 0.044 knot and 95% 
confidence (assuming σ =0.0841 knot). The 
accuracy of the average speed of 5 * 10-
second intervals would be 0.019 knots. 
 
If four GT-11 units were used simultaneously 
for a 20 second run (500m run at ~50 knots), 
the speed measurement accuracy should be 
about 0.015 knot with 95% confidence and 
0.019 knot with 98% confidence. 
 
Proof of Speed 
Perhaps the most important feature of the 
GPS-based Doppler method for measuring 
speed  is that it can actually provide a proof of 
speed. 
 
Using the Doppler data it is possible to prove 
that certain average speed with respect to the 
gound was maintained for a certain amount of 
time, because the Doppler method is trackable 
back to Units of Measurement.  
 
Proof of speed is possible even though we 
may not be able to prove an exact location 
where that speed was achieved. 
 
Incidentally, this is not the first time such a 
problem occurred. It is well known in physics 
that it is impossible to determine both velocity 
and position of an electron. We can accurately 
determine one or the other, but not both… 
 
Form my tests presented in Fig 1 it is obvious 
that GPS trackpoints should never be used to 
estimate the speed. Trackpoints can only 
serve as a verification of the integrity of the 
Doppler speed data. 
 
Setting up a Speed Contest 
Since the Doppler speed accuracy varies with 
the number of tracked satellites and their 
distribution above the horizon, there is a need 
to determine and monitor this accuracy during 
every serious speed event.  
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The variability range of the standard speed 
error σ is not large, but observable. In two 
days of experimenting near Sandy Point, 
Victoria, Australia I observed the average 
Doppler standard speed error σ values ranging 
from 0.05 to 0.1 knots. Fig 1 (bottom) and Fig 
2b illustrate this variability. 
 
One way to determine the actual accuracy of 
Doppler speed measurement during any given 
event is to use 2 identical GPS units like GT-
11 for the entire duration of the event, one 
unit placed in a stationary location and the 
other placed on a moving craft or person. The 
theoretical basis for this procedure is the fact 
that reasons for Doppler signal errors6 are 
common for multiple units that are 
sufficiently close to one another and hence the 
corresponding speed error distrubutions are 
correlated. 
 
Care should be taken  that a similar number of 
satellites are visible from both units. In case 
of speed windsurfing for example this is 
equivalent to the requirement of installing the 
GPS unit on top of a helmet so that is never 
under water. 
 
An alternative method would be to use one 
GPS unit, but make it motionless for a few 
minutes before and after each speed attempt. 
 
Doppler used in track data 
It is important to note, that 0.05 m/s (@0.1 
knot) accuracy in speed over 1 second interval 
is equivalent to 5 cm track position accuracy. 
 
GPS chipset developers know this very well 
and actually use Doppler speed measurement 
to improve the accuracy of trackpoints. 
 
Unfortunately, algorithms that mix Doppler 
and satellite distance data are proprietary and 
their unknown properties cannot be used to 
prove the speed or position. 
 
Aliasing 
The accuracy analysis presented above in this 
article is valid only when GPS-Doppler speed 
samples are free from aliasing errors. 
 

Aliasing may occur if the bandwidth of the 
sampled Doppler process is too high in 
comparison to the sampling frequency. The 
Nyquist criterion requires the sampling 
frequency to be at least twice the maximum 
frequency present in the sampled process.  
 
When a sattelite phase is steady enough to 
admit this satellite data for position and speed 
calculations, the bandwidth of a typical Phase 
Lock Loop filter that tracks this satellite 
signal is 2Hz. 
 
This means that in order to eliminate aliasing 
errors the following solutions are available: 
 
1. Use 4Hz GPS-Doppler sampling rate. 

This can be accomplished ether by using 
one GPS unit that is capable of reporting 
Doppler samples at 4Hz or four 1Hz GPS 
units synchronized to provide Doppler 
samples approximately every 250ms. 

2. When sampling frequency is limited to F 
(for example 2Hz for twin GT-11 units), 
mechanical motion of the GPS unit used 
to measure speed should not contain 
frequencies above F/2 (1Hz in our 
example). Mechanical vibrations of the 
GPS unit with frequencies above F/2 
(above 1Hz in our example) should be 
filtered  either using a seismic suspension 
or biofeedback (locating the GPS on a 
head of the competitor).  

 
Implementation of the second solution is 
described in the Reference 7. 
 
Spoofing 
    Opponents of direct measurements of 
average speed claim that it is possible to boost 
the average speed result by inducing 
transverse oscillations and thereby increasing 
the length L of the travelled trajectory. Let's 
explore the upper limit of this boost in the 
sport of speed windsurfing. 
    Consider transverse harmonic oscillations 
with peak-to-peak stroke S [m], and frequency 
f  [Hz] superimposed on motion with velocity 
V [knots]. When speed is sampled with 
frequency F, the maximum frequency of 
oscillations that can be recorded is f=F/2.  
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If oscillations are optimally phase-
synchronized with the sampling process, 
samples will contain the maximum possible 
average transverse velocity SF during the 
stroke. The corresponding speed boost εB is: 

( ) VSFVB −+= 22 944.1ε  [knots], 
where the factor 1.944 converts m/s to knots.  
For sampling rate F=1 Hz and speed V=40 
knots this means that a machinery of 1m in 
size that generates motion precisely phase 
synchronized with the GPS sampling process 
is required to boost the average speed by just 
0.05 knots. Such machinery is not only illegal 
in sailing, but will introduce extra drag and 
hence reduce the sailing speed.  

 
    For many reasons (such as satellite 
visibility, signal strength, reliability and 
accuracy of GPS measurements) it is 
recommended that speed-recording GPS units 
to be worn on/inside a helmet7 worn by a 
sailor. The stroke S of human head is limited 
to about 0.1 m. The corresponding upper limit 
of speed boost that can be achieved at V=40 
knots is 0.00047 knots. 
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0.2 0.4 0.6 0.8 1 S [m]  Fig 7. Maximum possible speed boost [knots] as a 
function of stroke for 1Hz speed samples at V=40 
knots. 
 
At World Record speed V=50 this upper limit 
for the speed boost is 0.00038 knots. 
  
    Let's now explore increasing the frequency 
of oscillations f to increase the speed boost. 
Human head cannot move with frequency 
faster than 2 Hz and stroke larger than about 
5cm (0.05m). Due to the upper frequency 
limit, the maximum possible speed boost 
would be achieved when speed is sampled at 
4 Hz. The corresponding "maximum 
physiologically achievable speed boost" at 
V=50 knots would be 0.0015 knots. Speed 
sampling at rates higher than 4 Hz will 

actually reduce the average speed boost, 
because not all samples used in the average 
speed calculation will contain the full amount 
of the boosted speed. 
    In view of the above analysis we have to 
conclude that, providing that aliasing is 
eliminated, effects of transverse oscillations 
can be considered insignificant for speeds 
above 30 knots when speed recording GPS 
units are installed on/inside helmets of 
windsurfing sailors.  
 
Future of GPS technology  
Today GT-11 unit provides 0.01 m/s speed 
measurement resolution and 0.1 m/s accuracy 
for each one-second sample.  
 
The short term future of hand-held GPS 
devices can be predicted by studying 
specifications of newly released GPS 
microprocessor chipsets that haven’t yet 
found their way to the mass market. 
 
These specifications indicate that as soon as 
2008 we can expect GPS devices offering 
0.01 m/s Doppler speed accuracy for each 
sample. It is rather interesting that the 
positional (trackpoint) acurracy will remain 
around 2.5 meters. 
 
This seems yet another significant argument 
to commit to Doppler method for speed 
measurement. 
 
Conclusions 
- Doppler shift is directly proportional to 

speed. Hence, measuring Doppler shift is 
the most direct and hence the most 
accurate way of measuring speed. 

- Doppler frequency is relatively insensitive 
to distances from satellites, phase delays 
and many other factors6 that are major 
sources of errors for trackpoints  

- Doppler method of speed measurement 
provides proof of speed, because it is 
trackable to Units of Measurement 

- Tolerance and accuracy of Doppler 
measurement can easily be measured and 
monitored experimentally 
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- Accuracy of Doppler speed measurements 
can be significantly improved by adopting 
the average speed as a measure of speed  

- Accuracy of the average speed 
measurement over given amount of time 
interval increases with the number of 
Doppler speed samples in this interval.  

- Very high accuracy in the average speed 
measurement can be achieved today 
providing that sufficiently large number of 
suitable GPS instruments (GT-11) is used 
to measure the speed 

- Doppler speed measurements are 
repeatable and reproducible with 
experimentally verifiable accuracy and 
resolution 

- The most practical method of computing 
the average speed from GPS-Doppler 
samples is to use the trapezoidal rule of 
integration. 

 
GPS Doppler tracking data from multiple 
satellites provides a very accurate and very 
easy way of measuring average speeds. The 
longer the measuring period is, the more 
frequent are Doppler speed samples and the 
more GPS units are used simultaneously to 
measure the same speed - the better the 
accuracy. 
 
For a speed event of 20 seconds or more, the 
average speed measurements with accuracy as 
high as 0.01 knot is possible with technology 
that exists today: the GT-11 unit from 
Locosys.  
 
Are we ready to know the Real Speed we 
achieve?  
 
Really? 
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